A Multi-VPP Product: The

Privacy-Preserving Co-optimizing

Coordinator

John C. Vogel | November 2025

1. Executive summary

Independently owned and operated virtual power plants are proliferating but need to work together - how should this conflict be addressed? This multi-VPP product preserves privacy and lets independent VPP operators optimize their own capacity, risk, and contingency coverage--without sharing proprietary data. Reinforcement learning happens across the VPPs while applying constraints and providing explainability. Evidence from peer-reviewed studies shows that multi-agent reinforcement learning (MARL) can reduce costs up to 18% and increase profits up to 22% relative to baselines. With higher renewable market share, those numbers improve further. These results come from simulated environments but illustrate the business value of decentralized, adaptive learning at scale.

2. Why now

- Demand is growing and the resource mix is changing. VPPs aggregate generation, storage and flexible loads to provide market-grade capacity and grid services.
- Market access is improving. FERC Order 2222 (US) and EU market reforms enable aggregated DERs to participate in wholesale markets.
- Data privacy is important. Owners want to keep sensitive data on-premises. Regulators and customers expect protections aligned to GDPR, NERC CIP, and utility cybersecurity practices.
- Al is maturing for operations. Decentralized MARL and edge computing can support real-time decision making, scalability, and resilience.
- Grid operators and energy aggregators need more flexible capacity.

3. What it is

The Federated Multi-VPP product is a neutral, privacy-preserving software layer that coordinates VPPs, enabling:

Co-optimization of capacity, risk, and contingency coverage across operators

- Local autonomy with shared model learning (no raw data exchange)
- Adaptive strategies that adjust to market prices, weather, and asset conditions
- Explainable and auditable decisions for regulated environments

4. How it works

Core capabilities

- Federated deep reinforcement learning: Each VPP trains locally; only model updates are shared and aggregated to form a stronger global policy. Techniques such as robust gradient filtering and stochastic gradient control reduce the impact of noisy or adversarial updates and speed convergence.
- Hierarchical, decentralized MARL: A leader-follower structure reflects real grid roles (e.g., a DSO setting strategic prices; VPPs optimizing local resources). Attention mechanisms focus learning on the most relevant signals as the number of VPPs grows.
- Safety and constraints: Constrained policy optimization and reward shaping embed physical limits, market rules, and reliability requirements into training, reducing unsafe exploration and improving policy feasibility.
- Explainability and audit: Interpretable MARL variants and feature-attribution methods help stakeholders understand price decisions and dispatch choices, supporting trust, review, and onboarding.
- Edge-ready and asynchronous: Edge computing, asynchronous updates, and hybrid cloud deployments reduce latency, manage bandwidth, and fit diverse IT/OT environments.
- Scenario testing: Digital-twin style, 'what-if' analysis supports planning for extreme events, unexpected load changes, and shifting price regimes.

Integration approach

- Modular APIs integrate with existing DERMS, SCADA, market interfaces, and forecasting tools.
- Data stays local; model aggregation aligns with privacy-enhancing technologies (e.g., differential privacy, homomorphic encryption) where required.
- Roll-out follows a pilot-to-scale path: start with a single operator and friendly neighbors;
 expand to multiple operators, programs, and markets.

5. Business outcomes

Financial performance

- Evidence from peer-reviewed studies shows decentralized MARL can deliver:
- 18% reduction in system costs and 22% increase in VPP profits versus baselines (simulation evidence)

- Improved scalability (tested up to 127 VPPs), with high adaptability scores under changing scenarios
- 12% performance gain when renewable penetration rises by 50%
- These results are indicative of the value possible with adaptive, decentralized control; production outcomes depend on markets, assets, and data quality.

Reliability and scalability

- Attention-based MARL and hierarchical control scale with heterogeneous fleets and many agents.
- Federated learning keeps sensitive data local, supporting cross-operator coordination without data pooling.
- Edge-ready designs and asynchronous updates support real-time operations in bandwidth-constrained settings.

Trust, compliance, and security

- Aligns with privacy and security practices referenced by DOE and utility standards bodies.
- Supports explainability for price setting, dispatch, and bidding decisions.
- Complements regulatory frameworks: FERC Order 2222 (US) and EU Clean Energy Package (EU) for market access; GDPR and NERC CIP for data protection and operational security (alignment by design; certification depends on operator implementation).

6. Implementation roadmap

- 1) Discovery and design
 - Identify priority use cases (e.g., capacity bidding, demand response, storage optimization, EV orchestration).
 - Map constraints (network, market, contractual) and telemetry availability.

2) Pilot

- Start with a small number of cooperating VPPs in one market.
- Train local models, test federated aggregation, validate policy safety, track KPIs (cost, margin, service quality, response time).

3) Scale and harden

- Add more operators and device classes; tune attention mechanisms and constraints.
- Integrate interpretability dashboards for operators and compliance teams.
- Introduce advanced PETs (differential privacy, encryption) as needed.

4) Production operations

• Establish model governance, drift monitoring, and retraining schedules.

 Expand to additional programs and markets; prepare for regulatory sandboxes or certification.

7. Priority use cases

- Day-ahead and real-time price-responsive dispatch for aggregated fleets
- Capacity, reserve, and ancillary services bidding with risk-aware strategies
- EV fleet smart charging/V2G orchestration under grid constraints
- Community VPP coordination with privacy-preserving data sharing
- Extreme-event readiness: fast, constraint-aware load shaping and islanding support

8. Conclusion

As distributed energy resources multiple, VPPs unlock flexible capacity at scale. This multi-VPP product gives operators a way to collaborate across organizational boundaries while keeping data private and policies explainable. By combining federated learning and hierarchical MARL, it turns distributed assets into reliable, market-grade resources.

References

- Yao, J.-D.; Hao, W.-B.; Meng, Z.-G.; Xie, B.; Chen, J.-H.; Wei, J.-Q. Adaptive multi-agent reinforcement learning for dynamic pricing and distributed energy management in virtual power plant networks. Journal of Electronic Science and Technology, 23 (2025) 100290. Pages cited: 1, 3, 8-10, 12-14, 17-18. Date: 2025.
- Li, X.; Luo, F.; Li, C. Multi-agent deep reinforcement learning-based autonomous decision-making framework for community virtual power plants. Applied Energy, 360 (2024) 122813. Pages cited: 1, 2, 4, 6. Date: 2024.
- Feng, B.; Liu, Z.; Huang, G.; Guo, C. Robust federated deep reinforcement learning for optimal control in multiple virtual power plants with electric vehicles. Applied Energy, 2023, Article 121615. Pages cited: 1-2, 3-4, 10, 14, 25, 30. Date: 2023.
- Review and Prospects of Artificial Intelligence Technology in Virtual Power Plants. Mathematics, 2024, 12, 3241. Pages cited: 7-11, 13, 17. Date: 2024.
- Al for Energy: Opportunities for a Modern Grid and Clean Energy Economy. U.S. Department of Energy. Pages cited: 18, 28, 47. Date: 2024.
- Federated Architecture for Secure and Transactive Distributed Energy Resource Management Solutions (FAST-DERMS). NREL. Page cited: 19. Date: 2024.
- Oxford Energy Forum, Issue 145: Artificial Intelligence and its Implications for Electricity Systems. Pages cited: 40, 43. Date: May 2025.

A Multi-VPP Product: The Privacy-Preserving Co-optimizing Coordinator

- Al-based energy management strategies for electric vehicles Challenges and future directions. Energy Reports, 13 (2025) 5535-5550. Pages cited: 5541, 5545, 5547. Date: 2025.
- VPP Profiles and Inventory (VP3 Flipbook). U.S. DOE. Page cited: 46. Date: 2024.